文章摘要
石岩,荆文光,程显隆,魏锋,熊婧.以精准化监管为导向的牛黄与其临床急重病症用药中替代品的判别研究[J].中国药事,2024,38(7):775-783
以精准化监管为导向的牛黄与其临床急重病症用药中替代品的判别研究
Study on the Discrimination of Bovis Calculus and Its Substitutes in ClinicalMedication for Acute and Severe Illnesses Guided by Precise Supervision
投稿时间:2024-04-01  
DOI:10.16153/j.1002-7777.2024.07.008
中文关键词: 牛黄  快速蒸发离子化质谱  机器学习  逻辑回归  特征选择
英文关键词: Bovis Calculus  REIMS  machine learning  logistic regression  feature selection
基金项目:国家重点研发计划项目(编号 2019YFC1711500);国家“重大新药创制”科技重大专项(编号 2018ZX09735-006);中国食品药品检定研究院2022年度关键技术研究基金项目-中药民族药“数字标本”构建的关键技术研究(编号 GJJS-2022-10-2);中国食品药品检定研究院学科带头人培养基金(编号 2023X10)
作者单位
石岩 中国食品药品检定研究院北京 102629 
荆文光 中国食品药品检定研究院北京 102629 
程显隆 中国食品药品检定研究院北京 102629 
魏锋 中国食品药品检定研究院北京 102629 
熊婧 中国食品药品检定研究院北京 102629 
摘要点击次数: 321
全文下载次数: 202
中文摘要:
      目的:研究实现牛黄、培植牛黄和体外培育牛黄的准确判别,为实现此类型品种的精准化监管提供技术支持。方法:首先使用快速蒸发离子化质谱(REIMS)技术对牛黄、培植牛黄和体外培育牛黄样品进行测定,然后通过机器学习中的逻辑回归模型对测得的样品数据进行特征降维,得到仅有22个特征离子通道的数据。使用特征降维后的数据训练经过超参数优化后的逻辑回归模型。结果:该逻辑回归模型对测试集中3种牛黄类药材样品的判别准确率为0.94,精确度为0.90,F1得分为0.93,AUC值为0.99。结论:REIMS技术和逻辑回归模型相结合的分析方法可快速而准确地实现牛黄、培植牛黄和体外培育牛黄的品种判别,对此类型品种精准化监管提供技术支撑。
英文摘要:
      Objective: To establish a method for the accurate discrimination of Bovis Calculus, Bovis CalculusCultured and Bovis Calculus Sativus, and provide technical support for the precise supervision of this type ofvariety. Methods: Firstly, Samples of the Bovis Calculus, Bovis Calculus Cultured and Bovis Calculus Sativuswere determined by rapid evaporative ionization mass spectrometry (REIMS). Then, a logistic regressionmodel in machine learning was used to perform feature dimensionality reduction on the measured sample data,resulting in data with only 22 characteristic ion channels. Train a logistic regression model with hyperparameteroptimization using data obtained from feature dimensionality reduction. Results: The results of test set validationindicated that the logistic regression model could accurately identify the samples of Bovis Calculus, BovisCalculus Cultured and Bovis Calculus Sativus with accuracy of 0.94, precision of 0.90, F1 score of 0.93 andAUC of 0.99. Conclusion: To sum up, the method based on REIMS technique and logistic regression model canquickly and accurately achieve simultaneous discrimination and identifi cation of Bovis Calculus, Bovis Calculus Cultured and Bovis Calculus Sativus. This study can provide technical support for precise supervision of thistype of variety.
查看全文   查看/发表评论  下载PDF阅读器
关闭